[EEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 5, NO. 3, MARCH 1995

79

Dispersion Analysis of a TLM Mesh Using
a New Scattering Matrix Formulation

Viadica Trenkic, Student Member, IEEE, Trevor M. Benson, and Christos Christopoulos, Member, IEEE

Abstract— An equivalent scattering matrix for the TLM sym-
metrical condensed node is derived by rearranging the order of
node ports. The new matrix is given in a partitioned form with
zero blocks on the main diagonal. It enables a transformation
of the general dispersion relation from a 12th- to a 6th-order
eigenvalue equation, thus significantly simplifying the problem of
finding a closed algebraic form of the dispersion relation for the
symmetrical condensed node.

I. INTRODUCTION

HE SCATTERING matrix of the symmetrical condensed

node (SCN) was derived originally by Johns [1] where
the order of twelve node ports is arranged in an apparently
arbitrary manner. Although the scattering matrix is a symmet-
ric, unitary and sparse matrix, the original choice of node port
numbering does not allow it to be partitioned and written in
a compact form. Recently, a more systematic node numbering
scheme was proposed in [2].

The form of the scattering matrix [1] does not present
an important issue in the implementation of the scattering
procedure since the use of scattering equations, rather than the
scattering matrix itself, is recommended for higher efficiency
[3]. Furthermore, a recent new approach for deriving scattering
equations based on node voltages and loop currents [4] does
not use the scattering matrix at all. However, manipulation
of the scattering matrix is necessary when investigating the
dispersion behavior of the node [5], where an eigenvalue
problem with matrices of dimension n = 12 has to be solved.
It would be convenient to represent the scattering matrix in a
form which reduces the eigenvalue problem to a lower order.

In this paper, it is shown that an equivalent scattering
matrix for the SCN, derived by rearranging the order of node
ports, enables the general dispersion relation to be elegantly
expressed in terms of matrices of size 6 x 6. The reduced size
of the equivalent eigenvalue equation means that it can be
more readily handled by present day symbolic packages and
leads to a closed form expression for the dispersion relation.
This is very useful in establishing trends and comparing
the dispersion in different types of mesh. Thus far, most
investigations of dispersion were numerical and only very
recently closed form expressions have been produced [5]. The
current paper describes a straightforward and much simpler
approach for obtaining a compact dispersion relation.
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TABLE I

ORDER OF NODE PORTS IN THE SCATTERING MATRIX

New row/column | Voltage | Original port
position index notation [1]

1 zny 3

2 ynz 5

3 mnzx 2

4 zpy 11

5 ypz 7

6 zpzx 9

7 rnz 6

8 yne 1

9 zny 4

10 rpz 10

11 ypx 12

12 zpy 8

II. NEwW FORM OF SCATTERING MATRIX

The notation of voltages in the SCN is given in the form Vi,
where ¢ denotes direction and j polarization of the appropriate
transmission line (4, 7 € {z,y, 2} and ¢ # 7), while s € {n.p}
indicates the position of the port on the negative (n) or
positive (p) side assuming the origin of coordinates is at
the center of the node. The order of node ports for the new
matrix representation is given in Table 1. The original scheme
numbering [1] is given in the third column for reference.

Rearranging rows and columns of the original scattering
matrix [1] according to Table I gives

S:[SOOT S(;)0] 0
where
s0=[§; gj @
with
{ [0 1 1
slz5 1 0 1 (3)
1 10
and
1 0 -1 1
82_5 1 0 -1 4)
-1 1 0

III. REPRESENTATION OF THE GENERAL DISPERSION RELATION

A general dispersion relation for TLM nodes can be ex-
pressed in the form [5]:

det (PS8 — e?%41) = 0 6))
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where g is the propagation constant along the transmission
lines. d is the node spacing, I is identity matrix and S is the
scattering matrix (1), while P is a connection matrix. For the
new arrangement of node ports. matrix P can be written in

the form:
| Po 0
e[t )
where
o Py
Po{,{ 0} N
with
X 0 0
Pi=10 Y O (8)
0o 0 Z
and
X=ehd Yy =ehd 7= ethd

7 stands for the Hermitian transpose of Py and ks.ky. k-
are the unknown components of the mesh propagation vector.
Solution of the general dispersion relation (5) can be found
by finding eigenvalues A, = e/*«* of the matrix PS which
is of order 12 x 12. The eigenvalue equation can be written
in the form:
PSX, = \.X,. (9)
Using the partitioned forms of matrices S (1) and P (6) and
by partitioning the eigenvector X, = [X1;Xo;]T we can write
(9) in the form:

g el o
which leads to a system of two matrix equations:
PoSoXa, = \X1, (n
PoST X1, =\ Xa,. (12)
Combining these two equations we obtain:
PySoPoST X1, = (\,)2 X1, (13)

This equation has the form of an eigenvalue equation for a ma-
trix S’ = PoSoPoS{ with eigenvectors X1, and eigenvalues
n, = (A,)?, requiring:

det (8" — n,I) = 0. (14)
Therefore, by solving the eigenvalue equation (14) of the 6th

order for v, we can obtain eigenvalues A, of the 12 x 12
matrix PS as A, = £,/7,.

IV. SOLUTION OF THE DISPERSION RELATION

Having reduced the size of eigenvalue problem (5) with 12
x 12 matrices to the equivalent one (14) with 6 x 6 matrices,
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its analytical solution is relatively simple. The six eigenvalues
7, of the matrix S’ can be found from (14) as:

m=mn2=1 (15)
m=n1=C1+/C? -1 (16)
75 =6 =C1 —/C7 — 1 (a7

where
Ch = % > cos(kyd) cos(k,d) — 1 (18)

Ky kg

and (kp.kg) € {(ke by (by ko) (R k) )

(15) represents nonpropagating stationary solutions. Since
m =15 L equation (16) and (17) represent solutions for waves
propagating in positive and negative directions, respectively.
It is interesting to note that solutions (15)—(17) have a similar
form to the first three solutions for the 2D TLM [5] and the
scalar 3D TLM nodes {6], the only difference being in the
definition of the constant C';. However, eigenvalue 7, are not
the eigenvalues of matrix PS, but of the equivalent matrix
Py SUPOSOT. The correct eigenvalue A, are calculated as square
roots of n,.

Grouping the reciprocal solutions (16) and (17) together and
substituting for &, = k, the dispersion relation for propagating
modes can be written in the form:

cos® (kod) = £ (C1 +1) 9

where C; is as defined in (18). This formula is the same as in
[5] but derived in a more compact manner.

V. CONCLUSION

A new formulation of the scattering matrix for the TLM
SCN node was presented. Its compact definitions was used to
facilitate reduction of the eigenvalue problem related to the
general dispersion relation for the SCN. It was shown that an
equivalent eigenvalue equation involving matrices of reduced
size (6 x 6) can be used to find the squares of all eigenvalue
solutions of the original matrix (of size 12 x 12), leading to
an elegant expression of the dispersion relation in a closed
algebraic form.
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